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Abstract—Materials play a vital role in the development of human 
civilization & country’s infrastructure. The historians have 
recognized the importance of materials in early periods of 
civilization by the name of most extensively used materials, for 
example, Stone Age, Bronze Age, Iron Edge etc. In recent trends 
there has been an increasing interest in composites containing low 
density and low cost materials. Composite materials are 
combinations of two or more than two materials obtained by artificial 
combinations of different materials in order to achieve the properties 
that the individual components cannot attain themselves. The 
applications of the composite materials start from simple household 
to heavy industrial purposes including in the Constructions of 
Earthquake Resistant Building. The present paper emphasizes on 
some of the important developments in the field of application of 
textile materials in earthquake resistance constructions. Cement 
concrete reinforced with steel rods and rings are very popular in 
ordinary construction material. One of the major drawbacks of using 
steel is its susceptibility to environmental attack which can severely 
reduce the strength and life of concrete structures. Recent 
developments in the field of fiber reinforced cement (FRCs) 
composites have resulted in the development of highly efficient 
construction materials. The FRCs are unaffected by electro-
mechanical deterioration and can resist corrosive effects of acids, 
alkalis, salts and similar aggregates under a wide range of 
temperatures. The fibers used in FRCs along with their properties, 
various techniques & application on the new and existing masonry 
structures to protect them from earthquake have been specially 
discussed here. 
 
Keywords: Earthquake, Environmental Attack, Textile Materials, 
Fiber Reinforced Cement, Masonry Structure, Retrofitting. 

1. INTRODUCTION 

In general every construction works in any developing 
country, such as many of our houses, schools, hospitals, 
bridges, roads are made from concrete and steel. However, 
such structures do not make sense in severe earthquake-prone 
areas such Kashmir, Himachal Pradesh, Uttarakhand, Nepal, 
Bihar, Delhi, Mumbai etc. Many concrete and steel reinforced 

masonry structures are widely present around the world. These 
structures are designed to withstand gravity loads and are not 
capable to withstand seismic forces during earthquake and 
caused wide spread damages. To protect the historic structural 
heritage and monuments of the country, it is essential to 
develop innovative techniques and technology for 
rehabilitating deteriorating structures.  

After earthquake other than life concern, the removal and 
transportation of large a mounts of concrete and masonry 
material causes concentrations of weight, dust, excessive 
noise, and requires long periods of time to gain strength before 
the building can be reopened for service. In this paper the 
focus is given on application of composite materials that 
enables the new material to resist extreme loads, such as 
earthquakes and high winds, while remaining functional. In 
spite of the progress made, it observed that the bridge-building 
industry is slow to trust new materials. ‘Adoption of new 
materials in bridge engineering is somewhat slow because the 
profession demands a high level of reliability before new 
materials find their way into practice. 
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 The distance from the epicentre.  
When the ground shakes, buildings respond to the 
accelerations transmitted from the ground through the 
structure's foundation. The inertia of the building can cause 
shearing of the structure which can concentrate stresses on the 
weak walls or joints in the structure resulting in failure or total 
collapse. The type of shaking and the frequency of shaking 
depends on the structure. Tall buildings tend to amplify the 
motions of longer period motions when compared with small 
buildings. Each structure has a resonance frequency that is 
characteristic of the building. Predicting the precise behaviour 
of buildings is complicated, a rule of thumb is that the period 
of resonance is about equal to 0.1 times the number of stories 
in the structure. Thus Macelwane Hall resonates at about 0.3 
seconds period, and Griesedeck at about 1.4 seconds. Taller 
buildings also tend to shake longer than short buildings, which 
can make them relatively more susceptible to damage. 
Fortunately many tall buildings are constructed to withstand 
strong winds and some precautions have been taken to reduce 
their tendency to shake. And they can be made resistant to 
earthquake vibrations. In many regions of limited resources 
and/or old structures, the structures are not very well suited to 
earthquake induced strains and collapse of adobe-style 
construction has caused thousands of deaths in the last decade. 
The worst possible structure for earthquake regions is the 
unreinforced masonry. 

 

Fig. 5: Shaking of Building Structures  

Application of Composite Materials in Earthquake 
Resistant Building Construction: 
Earthquake-resistant structures are structures designed to 
withstand earthquakes. While no structure can be entirely 
immune to damage from earthquakes, the goal of earthquake-
resistant construction is to erect structures that are fare better 
during seismic activity than their conventional counterparts. 
According to building codes, earthquake-resistant structures 
are intended to withstand the largest earthquake of a certain 
probability that is likely to occur at their location. This means 
the loss of life should be minimized by preventing collapse of 
the buildings for rare earthquakes while the loss of 
functionality should be limited for more frequent ones. To 
fight with earthquake destruction, the only method available to 
ancient architects was to build their landmark structures to 
last, often by making them excessively stiff and strong. 

Seismic Constructions Design: Using Fiber Reinforced 
Cement (FRC) Composite 
The objectives of this paper is to develop seismic 

Constructions design guidance using composite materials, 
which is compatible with the conventional construction design 
technique. Concepts and technique may be summarized as 
follows: 

Fiber Reinforced Cement (FRC) Composite materials are 
widely used in many structural applications where their 
mechanical performances are of primary importance. The 
stiffness and the strength of composites are dependent upon 
the mechanical properties of the constituents, but also upon 
the stress transfer processes occurring at the fibermatrix 
interface. Fiber Reinforced Cement (FRC) or Concrete 
composites are generally defined as composites with two main 
components, the fiber and the matrix. 

 

Fiber reinforced cement based composites have made striking 
advances and gained enormous momentum over the past four 
decades. This is due in particular to several developments 
involving the matrix, the fiber, the fiber-matrix interface, the 
composite production process, a better understanding of the 
fundamental mechanisms controlling their particular 
behaviour, and a continually improving cost performance 
ratio. The FRCs are unaffected by electro-mechanical 
deterioration and can resist corrosive effects of acids, alkalis, 
salts and similar aggregates under a wide range of 
temperatures. FRCs thus holds a very distinct advantage over 
steel as an external reinforcing device. Moreover, FRCs are 
available in the form of laminas and different thickness and 
orientation can be given to different layers to tailor its strength 
according to specific requirements. Again, FRCs as post- 
reinforcements possess high specific strength (strength/weight 
ratio) as well as they are very light and easy to handle. The 
FRCs are available as unidirectional fibers of a huge length. 
Therefore, joints in the reinforcement can be avoided very 
easily. Moreover, the corrosion of the reinforcements can be 
avoided completely. Research work is gaining momentum on 
the application of composite materials as post- reinforcement.  
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